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The optical properties of metal nanostructures have received a
great deal of attention in the past decade because of their
application in surface-enhanced spectroscopies, photocatalysis, and
nonlinear optics.1 In an attempt to understand particle size and
shape-optical property relationships, a number of methods have
been developed for fabricating nonspherical metal nanostructures.2

Perhaps the simplest of these methods involves the aggregation
of spherical gold or silver nanoparticles in solution or onto an
optically transparent solid support.1,3 Electromagnetically coupled
particles increase electric-field enhancement factors, while the
serendipitous formation of noncentrosymmetric aggregates can
create large nonlinear optical responses.3a

Optical characterization of aggregated samples of particles have
thus led to a deeper understanding of interparticle electromagnetic
coupling. However, studies on randomly aggregated samples of
spherical particles often suffer from uncertainties in aggregate
size and symmetry. Despite these concerns, surprisingly few
experimental methods have been described for arranging particles
into discrete collections of spatially and symmetrically well-
defined aggregates. Alivisatos reported linear arrays of DNA-
linked gold particle dimers and trimers.4 Electromagnetic inter-
actions between particles were not observed, however. Foss used
porous Al2O3 membranes to synthesize centrosymmetric and
noncentrosymmetric particle pair structures.5 Electromagnetic
coupling and SHG were observed over large particle separation
distances.

Our strategy for assembling coupled gold particle structures
has been to synthesize rigid thiol-functionalized phenylacetylenes
for use as molecular templates.6 Herein we report the extension
of this strategy to the assembly of coupled silver and gold particle
arrays with pseudo-D∞h, D3h, andTd symmetries. In addition, we
show that the linear optical properties of 30 nm diameter silver
particle dimers agree qualitatively with recent calculations on
similar systems.7

Gold and silver particles bridged by the thioacetyl-terminated
phenylacetylene bridges shown in Scheme 1 were assembled
according to published protocols.6 Transmission electron micro-
graphs (TEM) support the hypothesis that these molecular linkers
can dictate particle array symmetry (Figure 1). The structures
shown in Figure 1 are typical of those found over the entire grid.

Counting∼100 structuresfor each sample revealed estimated
yields of∼50, 30, and 10% for the dimers, trimers, and tetramers,
respectively. The remainder of the sample in each case consisted
predominantly of uncoupled particles.8

The symmetry observed by TEM for gold particle dimers and
trimers was confirmed with hyper-Rayleigh scattering spectros-
copy.9 Here we focus on the linear optical properties versus
separation distance for silver nanoparticle dimers. The 30 nm
diameter silver particles contain a single extinction at 420 nm,
corresponding to the well-known silver plasmon resonance.1

Addition of a 9-unit phenylacetylene bridge caused a slight red-
shift and absorbance increase of the silver plasmon band (Figure
2A). At separation distances corresponding to 7 phenylacetylene
units, an extinction at 450 nm was observed with a more well-
defined shoulder at 420 nm (Figure 2B). Both bands were more
intense than the single-particle plasmon band. Further reduction
in separation to 3 phenylacetylenes caused no further shift in the
low-energy extinction; however, the high-energy shoulder blue-
shifted to 370 nm, and both bands grew in intensity (Figure 2C).
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In addition, a relatively weak extinction was observed at
∼600 nm.10

To rationalize the spectra of silver particle dimers, comparisons
were made to recent calculations using the discrete dipole
approximation. Figure 3 presents spectra calculated for 60 nm
diameter particle dimers as a function of particle separation
distance.7 Note that despite the size difference, the behaviors are
qualitatively in aggreement; that is, both data sets reveal a red-
shift of the single-particle plasmon band, an increase in overall
extinction efficiency, growth of a high-energy shoulder (∼370
nm), followed by the appearance of a band at 600 nm as
interparticle distance decreases. Moreover, the ratio of extinctions
at ∼450 nm to∼370 nm approaches 1 in both data sets as
separation distance decreases.

A closer look at the spectra, however, reveals a few distinct
differences between theory and experiment. First, the bands
observed experimentally for the 3-unit linker at 450 and 370 nm
appear at∼500 and 420 nm, respectively, in the calculated spectra.
Second, the absolute extinction ratios are much higher in the
calculated spectra. These subtle differences are likely due to
particle size and size dispersity differences between particles in
the calculated versus experimental spectra. Additional disparities
could arise from the following observations. First, the appearance
of an intense, high-energy band which blue-shifts with decreasing
interparticle separation could be attributed to a strong quadrupole
resonance which is superimposed on the transverse plasmon
resonance.11 Second, the band observed experimentally at 450
nm represents a weighted sum of extinctions for all particle

orientations (plus residual monomer) and would therefore be
expected to appear toward the blue of the true longitudinal mode.2b

We have presented new methods for coupling metal particles
into symmetrically and sptially well-defined arrays of dimers,
trimers, and tetramers. These structures are useful for testing
theories of electromagnetic interactions between metallic spheres
and could find application in chemical sensing,12 nanoscale
electronics,13 and photonics.3a
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Figure 1. Representative transmission electron microscope images of
(A): Silver particle dimers linked by structureIa. (B) and (C): Gold
particle trimers linked by structuresIIa andIIb , repectively. (D) A gold
particle tetramer linked by structure III.

Figure 2. UV-visible spectra for: (A) 30 nm diameter silver particle
dimers linked by structureIc; (B) dimers linked by structureIb ; and (C)
dimers linked by structureIa (upper trace) and silver particle “monomers”
(lower trace). The monomer spectrum was acquired under solvent
conditions identical to those of the dimers but in the absence of a linker.

Figure 3. Silver particle dimer spectra calculated by Schatz et al. (adapted
from ref 7a). Particle diameter was 60 nm. Key:O monomers;0 30 nm
separation;) 4 nm separation;4 2 nm separation.
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